HCN4 dynamically marks the first heart field and conduction system precursors.
نویسندگان
چکیده
RATIONALE To date, there has been no specific marker of the first heart field to facilitate understanding of contributions of the first heart field to cardiac lineages. Cardiac arrhythmia is a leading cause of death, often resulting from abnormalities in the cardiac conduction system (CCS). Understanding origins and identifying markers of CCS lineages are essential steps toward modeling diseases of the CCS and for development of biological pacemakers. OBJECTIVE To investigate HCN4 as a marker for the first heart field and for precursors of distinct components of the CCS, and to gain insight into contributions of first and second heart lineages to the CCS. METHODS AND RESULTS HCN4CreERT2, -nuclear LacZ, and -H2BGFP mouse lines were generated. HCN4 expression was examined by means of immunostaining with HCN4 antibody and reporter gene expression. Lineage studies were performed using HCN4CreERT2, Isl1Cre, Nkx2.5Cre, and Tbx18Cre, coupled to coimmunostaining with CCS markers. Results demonstrated that, at cardiac crescent stages, HCN4 marks the first heart field, with HCN4CreERT2 allowing assessment of cell fates adopted by first heart field myocytes. Throughout embryonic development, HCN4 expression marked distinct CCS precursors at distinct stages, marking the entire CCS by late fetal stages. We also noted expression of HCN4 in distinct subsets of endothelium at specific developmental stages. CONCLUSIONS This study provides insight into contributions of first and second heart lineages to the CCS and highlights the potential use of HCN4 in conjunction with other markers for optimization of protocols for generation and isolation of specific conduction system precursors.
منابع مشابه
The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart.
Hyperpolarization-activated, cyclic nucleotide-gated cation currents, termed If or Ih, are generated by four members of the hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channel family. These currents have been proposed to contribute to several functions including pacemaker activity in heart and brain, control of resting potential, and neuronal plasticity. Transcripts of the...
متن کاملMolecular analysis of patterning of conduction tissues in the developing human heart.
BACKGROUND Recent studies in experimental animals have revealed some molecular mechanisms underlying the differentiation of the myocardium making up the conduction system. To date, lack of gene expression data for the developing human conduction system has precluded valid extrapolations from experimental studies to the human situation. METHODS AND RESULTS We performed immunohistochemical anal...
متن کاملExtended atrial conduction system characterised by the expression of the HCN4 channel and connexin45.
OBJECTIVE In the heart, there are multiple supraventricular pacemakers involved in normal pacemaking as well as arrhythmias and the objective was to determine the distribution of HCN4 (major isoform underlying the pacemaker current, I(f)) in the atria. METHODS In the atria of the rat, the localisation of HCN4 and connexins was determined using immunohistochemistry, and electrical activity was...
متن کاملDeep bradycardia and heart block caused by inducible cardiac-specific knockout of the pacemaker channel gene Hcn4.
Cardiac pacemaking generation and modulation rely on the coordinated activity of several processes. Although a wealth of evidence indicates a relevant role of the I(f) ("funny," or pacemaker) current, whose molecular constituents are the hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels and particularly HCN4, work with mice where Hcn genes were knocked out, or functionally mod...
متن کاملBitopic Sphingosine 1-Phosphate Receptor 3 (S1P3) Antagonist Rescue from Complete Heart Block: Pharmacological and Genetic Evidence for Direct S1P3 Regulation of Mouse Cardiac Conduction.
The molecular pharmacology of the G protein-coupled receptors for sphingosine 1-phosphate (S1P) provides important insight into established and new therapeutic targets. A new, potent bitopic S1P3 antagonist, SPM-354, with in vivo activity, has been used, together with S1P3-knockin and S1P3-knockout mice to define the spatial and functional properties of S1P3 in regulating cardiac conduction. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 113 4 شماره
صفحات -
تاریخ انتشار 2013